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Abstract

Designing maximally selective ligands that act on individual drug targets with high binding affinity has been the central
dogma of drug discovery and development for the past two decades. However, many low-affinity drugs that aim for several
targets at the same time are found more effective than the high-affinity binders when faced with complex disease condi-
tions, such as cancers, Alzheimer’s disease and cardiovascular diseases. The aim of this study was to appreciate the import-
ance and reveal the features of weak-binding drugs and propose an integrated strategy for discovering them. Weak-binding
drugs can be characterized by their high dissociation rates and transient interactions with their targets. In addition, network
topologies and dynamics parameters involved in the targets of weak-binding drugs also influence the effects of the drugs.
Here, we first performed a dynamics analysis for 33 elementary subgraphs to determine the desirable topology and dy-
namics parameters among targets. Then, by applying the elementary subgraphs to the mitogen-activated protein kinase
(MAPK) pathway, several optimal target combinations were obtained. Combining drug–target interaction prediction with
molecular dynamics simulation, we got two potential weak-binding drug candidates, luteolin and tanshinone IIA, acting on
these targets. Further, the binding affinity of these two compounds to their targets and the anti-inflammatory effects of
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them were validated through in vitro experiments. In conclusion, weak-binding drugs have real opportunities for maximum
efficiency and may show reduced adverse reactions, which can offer a bright and promising future for new drug discovery.

Key words: weak-binding drug; polypharmacology; mathematical modeling; systems pharmacology

Introduction

Over the past decades, the dominant paradigm in drug discov-
ery has been to develop maximally selective ligands that act on
individual drug targets with high binding affinity [1]. However,
analysis of the binding efficiencies of natural products and mar-
keted drugs indicates that therapeutic efficacy is not necessarily
associated with high binding affinity [2]. For instance, meman-
tine, a drug for Alzheimer’s disease, is a small, low-affinity,
nonselective N-methyl-D-aspartic acid (NMDA) receptor antag-
onist, which shows a lower prevalence and less side effects
than high-affinity, single-target drugs [3]. The underlying regu-
latory mechanisms of many effective low-affinity drugs have
yet to be fully characterized [4]. Particularly, natural products,
many of which having weak binding affinity, have been proved
to have solid therapeutic efficacy from earlier animal-based
drug discovery settings [5, 6]. It is estimated that there are cur-
rently �110 000 low binding affinity small molecules (with in-
hibitory constants to their targets more than 10� 6 M) in the
public database [7]. However, the potential efficacy of these
weak-binding molecules have largely been ignored.

There are a number of reasons of why weak-binding mol-
ecules have been neglected for a long time as a source for drug
discovery in biological sciences. First, there is still a paradigm in
the minds of many scientists stating that effect and specificity
only come from drugs that bind tightly to a target molecule [8].
It has been envisioned that a weak binder is not specific to its
target, and typically shows high cross reactivity to other binding
sites. However, cross reactivity of the drug may not be a disad-
vantage, and it gives the drug a chance to interact with multiple
targets for maximum efficiency [8]. Second, for weak-affinity
molecules, the amount of binding to the target can be perceived
as a problem, as it may be too low to propel a response.
However, if local concentrations of a weak binder are high
enough, it can drive the equilibrium, resulting in considerable
bound ligand [8]. Third, most of the current drug discovery mod-
els are incapable of screening or analyzing weakly binding drugs
or weak biological interactions. As the molecular libraries are
typically screened at micromolar concentrations or lower, the
weak-binding molecules can be easily washed out in a variety
of screening processes.

To re-recognize the importance of weak-binding molecules
as well as understand the mechanisms of action of them, we
should define and predict the drug phenotype response on
the basis of the quantitative and systematic analysis of drug–
protein interactions on a proteome-wide scale. The immediate
question to address is how we can select the correct combin-
ation of therapeutic targets within complex molecular networks
and rationally design weak-binding drugs.

Recently, network pharmacology approaches are emerging
as a powerful way to re-purpose approved drugs and elucidate
the mechanisms of action of natural products. Tang et al. [9] de-
picted a number of network-based computational-experimental
approaches for searching potential drug target combinations in
the disease-associated networks. They also gave representative
examples of how system-level network approaches may lead to

multi-target therapies that are less vulnerable to drug resist-
ance and side effects in anticancer drug discovery. Kibble et al.
[10] presented a similar network pharmacology approach to
map the unexplored target space and therapeutic potential of
natural products. Using drug and target interactions deposited
in DrugBank database, Barneh et al. [11] constructed and ana-
lyzed the drug–target network and comprehensively assessed
the evolutionary changes in the networks following expansion
of DrugBank database from version 1.0 to 4.0 [12, 13]. Compared
with the pioneering study conducted by Yildirim et al. [14], they
showed that such advances in database quality can better meet
the needs of modern pharmaceutical industry. The above stud-
ies [9–11] provided good examples of the application of network
pharmacology in drug discovery. However, most of them only
performed static analysis for the networks, and few have con-
sidered the dynamics properties of drug–target interaction and
target–target interaction, which should be key points in under-
standing the efficacy and action mechanisms of weak-binding
drugs.

In this review, we intend to draw attention to the discovery
of this new range of drug candidates characterized by weaker
binding and/or faster kinetic profiles. Toward a systematic
understanding of effective weak-affinity molecules, it is import-
ant to emphasize that weak binders typically demonstrate a dy-
namic binding profile possibly with high dissociation rates.
Estimates of the duration of drug–receptor residence time can
be indicative of drug performance. In addition, a weak-binding
molecule is more likely to bind to a number of different targets,
and the network topology and dynamics properties among
these targets can be a key contributor to the efficacy of the
weak-binding drugs. Further, we also discussed the current
available tools to screen for weak-binding drug candidates and
propose a systematic strategy for analyzing and discovering ef-
fective weak-binding drugs.

Weak-binding drugs: affinity and kinetics

Features of interacting drug–target pairs provide useful infor-
mation on the strength and kinetics of binding. Binding kinetics
is concerned with the rate constant of ligand association (kon)
and ligand dissociation (koff) [15]. At equilibrium, the ratio of the
dissociation to the association rate constants establishes the
equilibrium dissociation metric of the ligand (Kd¼ koff/kon),
which is a usual measure of affinity and determines the fraction
of receptor occupancy at specific ligand concentrations. Kd, koff

and kon are intrinsic to the target–drug interaction in question.
For a weak non-covalent interaction, Kd is more than approxi-
mately 10�6 M (usually in the range of 10�5 to 10�3 M). For many
weak or transient interactions, koff is higher than 0.1 s�1 [8]. This
means that dissociation of the complex is more rapid than se-
conds. For instance, the drug memantine shows binding to the
NMDA receptor in the millimolar range with an off-rate of ap-
proximately 0.4 s�1 [16]. Fast off-rates of weakly binding drugs
could be a key factor in designing effective ion-channel block-
ers, and that this principle can apply to a number of neuro-
logical and other targets [8]. Actually, the equilibrium
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dissociation constant Kd, measured in vitro, is not always dir-
ectly related to the in vivo efficacy of a ligand. The residence
time of a drug molecule on its molecular target has been pro-
posed to be more crucial for sustained drug efficacy in vivo than
the affinity of the drug for its target [17]. The residence time is
related only to the rate of complex dissociation, which is the re-
ciprocal of the dissociation rate constant (1/koff). Unlike kon,
which is limited by the diffusion rate in physiological solutions
and affected by in vivo pharmacological factors, koff is entirely
dependent on specific interactions (such as changes in protein
conformation, nonpolar forces, hydrogen bonds, van der Waals
interactions and so on) between the ligand and its target bind-
ing pocket [18]. Therefore, optimization of such interactions,
and consequently increasing the dissociation rate of a ligand,
may be the fundamental value of medicinal chemistry in terms
of designing weak-binding drugs.

Weak-binding drugs: polypharmacology

Finding drug candidates that selectively (at high affinity) bind
single targets has been successful for diseases with a clearly
defined mechanism, etiology and pathophysiology [19].
However, when faced with complex disease conditions, such as
cancer, depression and cardiovascular diseases, ‘promiscuous’
or ‘dirty’ drugs aiming for several targets at the same time could
be far more productive than those single-target drugs [20, 21].
Complex diseases are not caused by single molecular defect, but
are rather the result of a combination of molecular dysfunctions
[22]. In this context, multi-target drugs may have a better
chance of affecting the complex equilibrium of whole cellular
networks [23]. In fact, polypharmacology, which focuses on de-
signing drug to multiple target receptors, has emerged as a new
paradigm in drug discovery [24]. Polypharmacology currently
encompasses both multiple drugs that act independently on dif-
ferent targets, and a single drug binding to multiple targets
within a biological network, as opposed to the concept of ‘one
gene, one drug, and one disease’ [25–27]. In recent years, the ef-
ficacy of multi-target drug is supported by observations con-
cerning the robustness and resilience of complex biological
systems. For example, most approved kinase drugs potently in-
hibit multiple targets, and they are attractive therapeutic agents
for numerous disorders ranging from neurology to cancer [28].
Development of a multi-target drug is likely to produce a drug
binding to its targets with weak affinity because it is unlikely
that a small, drug-like molecule will bind to a variety of differ-
ent targets with equally high affinity [23]. In other words, cross
reactivity of the drug should be substantial so that it can theor-
etically interact with multiple targets for maximum efficiency
[8]. Partially affecting several targets by a low-affinity, multi-
target drug rather than completely eliminating the links can
also increase weak links in cellular networks and stabilize these
networks [4, 29]. Moreover, through including weak multi-target
drugs, the size of drug-amenable targets will increase signifi-
cantly in terms of potential druggable proteins. Databases on
cellular and protein networks will therefore show potential to
define new targets for drug design [23].

Tools for screening weak-binding drugs
Experimental tools

To find a single target, usually a protein playing a major role in
the disease process, and then to find the high-affinity binders

for this target has been the central dogma of drug discovery and
development. Current tools available to the pharmaceutical in-
dustry to identify new drugs rely heavily on high-throughput
screening (HTS) procedures, where large libraries, consisting of
hundreds or thousands of molecules, are tested for their bind-
ing to specific targets [30]. Even though HTS has been a success
in some cases, it is now abundantly clear that it has been a dis-
appointment in many drug discovery projects. The causes of at-
trition in later phases of drug discovery have been attributed to
poor absorption, distribution, metabolism, excretion and toxic-
ity (ADME/T) properties [31]. Screening for weak-binding drugs,
while promising, is still a challenge considering current drug
screening approaches. Generally, weakly binding drugs/weak
biological interactions are not studied because of difficulties in
screening or analyzing them. Most HTS assays rely on indirect
detection methods, such as fluorescence, absorbance or radio-
activity that could be a barrier for estimating weak-binding
events. Because of limitations in assay design, HTS procedures
can produce false positives and negatives, especially when esti-
mating the presence of weak binders. Nevertheless, HTS based
on inhibition assays of enzyme activities, for example, can, if
properly designed, detect weak binding of compounds with half
maximal inhibitory concentration (IC50) less than 10�4 M [32].
There are a number of potential methods for screening weak
binders to protein targets, such as nuclear magnetic resonance
[33], mass spectrometry [34], X-ray crystallography [35], affinity
chromatography [36], capillary electrophoresis [37] and surface
plasmon resonance [38]. As to G protein-coupled receptor
(GPCR) drug discovery, the vast majority efforts have relied on
cell-based assays coupled with HTS of large compound libraries
for hit identification [39].

Computational tools

The process of defining and predicting polypharmacological ef-
fects of weak-binding drugs requires a quantitative understand-
ing of the structure and function of a protein, as well as an
understanding of the protein’s interaction with small molecules
in the context of biological networks [24]. Cellular components
carry out their biological functions through interacting with
each other in a network-like manner [40]. The network structure
along with the dynamics properties largely determine the biolo-
gical function of the interacting molecules, so that the structure
of the biological network involving the drug targets may help to
reveal the action modes of weak-binding drugs [41, 42].
Mathematical models of many disease-relevant pathways have
been developed with the potential to elucidate underlying dis-
ease mechanisms and to identify effective treatment strategies
[43, 44]. Properties of these disease-related molecular networks
can be analyzed to find potential drug targets and to understand
the interaction pattern between them [45, 46]. For instance, the
special signaling elements, such as the PI3 kinase [47], the Akt
kinase [48] and the insulin receptor substrate family [49], which
are important junctions of multiple signaling pathways, have
been used as important targets for drug development. The mod-
eling of network behavior has also indicated that the partial in-
hibition of several targets can be more efficient than complete
inhibition of a single target [4]. Further, to quantitatively ana-
lyze protein–ligand interactions, one can start with character-
ization of the thermodynamics and kinetics of protein–drug
interactions [15], followed by determination of the conform-
ational and chemical states of proteins on drug binding through
allosteric or orthosteric interactions [24, 50]. This process is
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based predominantly on protein–ligand docking [51], free en-
ergy calculations [52] and molecular dynamics simulations [53]
for the protein–ligand complex.

A systematic strategy for weak-binding drug discovery

To explore new frontiers in pharmacology and rationally design
weak-binding drugs, it is necessary to integrate those disjointed
computational and experimental techniques into a unified
framework. Combining pathway and network analyses,
proteome-wide prediction of drug–target interactions and phar-
macokinetic and pharmacodynamic models will enable the de-
velopment of a systematic approach for weak-binding drug
discovery. Here, we present a systems dynamics method for
inferring network models and predicting the response of cell
signaling networks to multi-node weak perturbations (Figure 1).
Specifically, we first performed a dynamics modeling for 33
elementary subgraphs to investigate the influence of network
structure and dynamics parameters on the effects of multi-tar-
get drugs. Second, the elementary subgraphs were applied to a
classic mitogen-activated protein kinase (MAPK) pathway to
search for the optimal target combinations. Then, based on
these target combinations, two in-house drug targeting
approaches, SysDT [54] and WES [55], were used to screen the
multi-target compounds from both small molecule drugs and
natural products. To evaluate the binding affinity between the
targets and compounds, we performed the molecular dynamics
simulation and calculated the binding free energy between
them. These predictions were then tested by kinase inhibition
assays. Finally, we validated the potential therapeutic effects of
these weak-binding drug candidates by in vitro experiments.

A case study: discovering effective weak-
binding drugs acting on MAPK pathway
Elementary dynamics analysis reveals the topological
characteristics and dynamic properties of target
subgraphs

To search for the optimal drug target combinations for weak-
binding drugs, as well as the network topologies and dynamics
parameters these targets involved in, we first built dynamics
models for a series of three-component elementary subgraphs,
which could be considered as simplifications of molecular net-
works [41, 56, 57]. The elementary subgraphs were first ex-
tracted from two previous studies [58, 59], and then extended to
contain all possible interactions between the components
(Supplementary Figure S1). Each of the elementary subgraphs
represents one type of basic signal transmission pattern of a
target combination. The two drug targets A and B in an elemen-
tary subgraph can propagate the signal to a downstream ef-
fector C whose activity is a measure of the therapeutic effect.
Relationships between the targets A and B can be activation or
inhibition and may contain feedback loops, while A and/or B
has either promotion or suppression effect on the efferent com-
ponent C. There are in total 33 elementary subgraphs, which are
divided into two groups: the ‘single-tandem subgraphs’ (STSs)
and ‘dual-parallel subgraphs’ (DPSs). In the STSs, A and B are in
one single pathway, where the effector C is directly affected by
target B, and A has indirectly influence to C through B. While in
the DPSs, the two targets are in two parallel pathways and can
both directly influence the effector C (Supplementary Figure S1).
Among these subgraphs, some are commonly found in intracel-
lular signaling networks, such as the cascades [60], feedforward
loops [61, 62] and feedback loops [63], and the specific biological

Figure 1. A systematic strategy for weak-binding drug discovery. (A) Elementary dynamics analysis reveals the influence of network topology and dynamics param-

eters on the effects of drugs. (B) Applying the elementary subgraph to a specific pathway to find the optimal target combinations. (C) Drug–target interaction identifica-

tion for screening ideal multi-target compounds. (D) Assessing drug–target binding affinities via molecular dynamics simulation.
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functions they carry out have been well discussed in previous
studies [60–63]. Although many biological signaling networks
may conform to one of these simple topologies, others may be
abstracted to one that recapitulates the physiologically relevant
emergent properties [59].

The elementary subgraph was then modeled by a set of or-
dinary differential equations (ODEs) derived by the rate laws of
mass action and the complete Michaelis-Menten reaction kin-
etics (Supplementary Figure S2). For each elementary subgraph,
the value of Michaelis constant (KM) and catalytic constant (kcat)
were generated by Latin hypercube sampling in a biological
range of 0.001, 10 mM for KM, and 0.1, 10 s for kcat [56]. A total of
10 000 parameter sets were generated randomly to explore the
activity of C under simultaneously inhibition to the two targets
for different parameter sets.

To evaluate whether the two targets A and B in an elemen-
tary subgraph can have synergistic effect, we supposed that
there are two individual inhibitors IA and IB, respectively, bind-
ing to targets A and B, and calculated the combination index (CI)
to distinguish the elementary subgraph between synergy and
antagonism [56, 58].

CI ¼ IA½ �combination

IA½ �
þ IB½ �combination

IB½ �

Where [IA] and [IB] are the concentration of IA and IB that in-
dividually achieve 50% inhibition effect on C, and [IA]combination

and [IB]combination are the concentration of each inhibitors pro-
ducing the same 50% effect when used in combination. For each
set of parameters, the minimum CI value for synergistic cases
(or maximum for antagonistic cases) was extracted and used for
drawing the CI distributions for the elementary subgraphs

(Supplementary Figure S3). When CI< 1 or CI> 1, the elemen-
tary subgraph is considered as a synergistic or antagonistic sub-
graph, respectively.

The distribution of CI values of the 33 elementary subgraphs
under varying parameters shows that the synergistic effect of
18 subgraphs is only determined by the network topology, ra-
ther than the dynamics parameters (Figure 2 and
Supplementary Figure S3). There are five parameter-independ-
ent synergistic subgraphs, and they are DPSs in which targets A
and B have the same promotion/suppression effect on effector
C. The other 15 subgraphs are parameter-dependent subgraphs,
in which the dynamics parameters (KM, kcat) conferring a major
influence on the synergistic effect of the subgraphs (Figure 2).
Overall, the synergistic/antagonistic effect of elementary sub-
graphs can be determined either by the network topology alone,
or by both of the network topology and the dynamics
parameters.

Applying elementary subgraphs to the MAPK pathway
to find optimal target combinations

Among numerous intracellular signaling, the MAPK cascades
are evolutionarily conserved and well-studied signaling path-
ways that play a key role in the regulation of fundamental cellu-
lar processes in responses to stress and inflammation [64, 65].
Applying the elementary subgraphs for experimentally testable
system, we reconstructed a condensed MAPK signaling net-
work, in which any intermediate or auxiliary process poorly
defined was excluded (Figure 3). Using a set of parameters
within appropriate biological ranges, the modeling work was
carried out by numerical integration of ODEs (Supplementary
Table S1). The reconstructed system can be activated by a LPS-

Figure 2. The 33 elementary subgraphs and dynamics modeling analysis of their synergistic effects. The elementary subgraphs can be parameter-independent sub-

graphs, which means the synergistic/antagonistic effect of the subgraph is only dependent on the network structure, but not dependent on the dynamics parameters

(KM, kcat) in the subgraph. These parameters (KM, kcat) depict the underlying kinetic rates and dynamic properties of the signaling pathways. The other group of sub-

graphs are parameter-dependent subgraphs, the synergistic/antagonistic effect of which depend heavily on the dynamics parameters.
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induced stimulation. The perturbation effects (inhibitory effect
of drug) on different subgraphs were then evaluated by assess-
ing the signal levels of interleukin (IL)-6 and tumor necrosis fac-
tor (TNF)-a.

There are 15 target combinations (corresponding to 3 STSs
and 12 DPSs) among the six targets (i.e. MEK1/2, MKK4/7, MKK3/
6, JNK, ERK and p38) in the MAPK pathway (Table 1). To assess
the efficacy of weak-binding drugs on these elementary sub-
graphs, we simulated the inhibitory effects of two types of per-
turbations: multi-weak perturbation (inhibit two targets
simultaneously with 20% inhibition rate) and single-strong per-
turbation (inhibit a single target with 80% inhibition rate).

The results show that among multi-weak perturbations on
the 3 STSs, only the combinatory inhibition of MKK3/6 and p38
shows desirable inhibitory effects on IL-6 and TNF-a, which is al-
most equivalent to the single-strong perturbation on each of the
targets alone (Table 1). Compared with the other two branches,
the multi-weak perturbation on JNK pathway branch (MKK4/
7þ JNK) shows little influence on IL-6 and TNF-a production, con-
sistent with previous research showing that the JNK signaling
pathway is not essential for TNF-a gene expression in embryonic

fibroblasts [64, 66]. For the 12 DPSs, simultaneously inhibiting
ERK and p38 shows the best inhibitory effects on IL-6 and TNF-a.
On the contrary, multi-weak perturbation on MEK1/2 and MKK4/7
shows the least attenuation of IL-6 and TNF-a (Table 1). An inter-
esting observation is that the five optimal target combinations
for multi-weak perturbations all contain the p38 MAPK. p38
MAPK is a primary target of anti-inflammatory pyridinyl imid-
azole drugs that inhibit endotoxin-stimulated production of TNF-
a [65, 67]. Moreover, a recent study shows that oscillation of p38
activity is necessary for efficient expression of pro-inflammatory
genes such as IL-1b, IL-6 and TNF-a [68].

Collectively, for the MAPK pathway, target combinations
containing the p38 kinases are potential priorities for designing
weak-binding drugs.

Combining drug–target interaction identification
and molecular dynamics simulation for screening
effective weak-binding drugs

A compound database, which includes 12 144 natural products
from TCMSP [69] and 7391 small molecular drugs from

Figure 3. Mathematic modeling of MAPK pathway. Detailed equations and parameters can be found in the Supplementary Table S1.
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DrugBank [13], was established for inverse screening. The targets
of these compounds were predicted using the SysDT [54] and
WES [55] models as we previously described. As we need to
screen inhibitors for the MAPK pathway, the action modes (acti-
vation or inhibition) between the compounds and the targets are
then predicted using a PreAM model [70]. Then, compounds that
inhibit more than one protein kinase target of MAPK pathway
were filtered in accordance with the three target combinations
(ERKþp38, JNKþp38 and MEK1/2þp38), and 32 molecules were
obtained as multi-target compounds (Supplementary Table S2).
To evaluate the affinity of these compounds, molecular dy-
namics simulation and Molecular mechanics Poisson–
Boltzmann surface area (MM-PBSA) methods were used to calcu-
late the binding free energies. Briefly, the crystallographic co-or-
dinates of the four MAPKs were retrieved from the Protein Data
Bank (www.rcsb.org) [71], and the compounds were docked to
the original ligand binding pocket of each protein. The docked
complex with optimal conformation served as starting structure
for molecular dynamics simulation according to our previous
work [72]. After 5 nanosecond (ns) molecular dynamics simula-
tion, the last 1ns trajectory file was extracted to binding free en-
ergy calculation using MM-PBSA module.

The results show that most of the natural products tend to
weakly bind to the target proteins with large binding free energy
(DGbind > �25 kcal/mol) (Supplementary Table S2). Luteolin and
tanshinone IIA were selected from natural products database
for affinity determination (scopoletin as negative control) and
four selective inhibitors for MEK, ERK, JNK and p38, respectively,
were selected for comparison (Table 2). The binding affinities of
luteolin to the four MAPKs was tested experimentally by in vitro
kinase inhibition assays (Supplementary Figure S4). It turns out
that luteolin possesses weak affinity (IC50 > 10 lm) to all the
four MAPKs. Further, the pharmacokinetic properties of luteolin

and tanshinone IIA obtained from the TCMSP database show
that both of them comply well with Lipinski’s rule of five, which
suggests that they can manifest proper biological effects in in
vivo systems (Supplementary Table S3).

To develop experimentally testable predictions, we simu-
lated the inhibitory effects of the two natural products (luteolin
and tanshinone IIA) and the four known selective inhibitors on
IL-6 and TNF-a production using the same MAPK pathway
model mentioned above (Supplementary Table S1).
Computationally, we simulated the effect of each compound at
five doses and used the levels of IL-6 and TNF-a as feature met-
ric for MAPK-mediated inflammatory responses to select treat-
ment conditions from the resulting data set that had desirable
anti-inflammatory effects. The inhibition rates of the com-
pounds for each target protein were inferred from their IC50

curves. The simulation results show that luteolin achieves bet-
ter effect than all the four selective inhibitors when concentra-
tions are around 10 lM (Figure 4A).

To further experimentally test these predictions, we exam-
ined the levels of IL-6 and TNF-a in the supernatant of THP-1
cells under the treatment of these compounds. Briefly, the THP-
1 cells were stimulated for 48 h with 25 ng/ml PMA and differen-
tiated THP-1 cells were treated 4 h with LPS (1 lg/ml, as a posi-
tive control) or LPS in the presence of the compounds. The IL-6
and TNF-a concentration of supernatant were determined using
ELISA kit (see Supplementary methods for more details).
The result shows that, pretreatment with luteolin at final con-
centrations ranging from 1 to 10 lM exhibited a steeper dose-
dependent rise in inhibition of IL-6 and TNF-a in contrast to the
shallow rise seen with selective inhibitors of MAPK
(Supplementary Figure S5).

Although a corresponding increase in inhibition of IL-6 pro-
duction were observed in the MAPK inhibitors treatment group
for dose between 0.001 and 1 lM, these inhibitory effects did not
reach up as high as luteolin when concentrations exceed to 10
lM (Figure 4B and Supplementary Figure S5). It is also note-
worthy that weak inhibitory effect of luteolin against the four
MAPK targets were detected around 10 lM (Supplementary
Figure S4). Compound concentration above 10 lM was not in
consideration according to the cytotoxicity assay
(Supplementary Figure S6).

Taken together, multi-weak perturbations of luteolin and
tanshinone IIA against the MAPK signaling pathway can poten-
tially decrease the inflammatory response.

Discussion and conclusion

Developing highly selective ligands that interact with individual
target proteins has been the dominating drug discovery ap-
proach in the past decades [1]. Contrary to highly publicized
claims, a highly potent lead compound usually yields a drug
candidate that often links to a higher risk of failure during drug
development [24]. Meanwhile, analysis of the binding affinities
of marketed drugs and natural products indicates that thera-
peutic efficacy is not necessarily associated with high binding
affinity [2]. At the molecular level, weak interactions play crit-
ical roles in molecular recognition in biological systems, from
the classic example of protein folding to recent discoveries in
metabolism, gene regulation and signal transduction [8, 23, 81].
From the point view of network biology, weak interactions con-
tribute toward the robustness and diversity of biological net-
works, and thus collective weak interactions may have more
profound effects on biological systems than a single, strong
interaction [29, 82]. Weak interaction can be characterized by

Table 1. The simulated inhibitory effects of the two types of perturb-
ations on elementary subgraphs or single targets in the MAPK
pathway

Perturbations
(inhibition rate)

Target
combinations

Inhibitory
effects (%)

IL-6 TNF-a

Multi-weak perturbation:
STS (20% for each target)

MEK1/2 þ ERK 19.88 14.84
MKK3/6 1 p38 85.60 73.85
MKK4/7 þ JNK 6.38 4.67

Multi-weak perturbation:
DPS (20% for each target)

MEK1/2 þMKK4/7 0.52 0.38
MEK1/2 þMKK3/6 11.09 8.14
MKK3/6 þMKK4/7 10.70 7.85
MKK3/6 þ ERK 35.96 26.91
MKK4/7 þ ERK 17.53 13.07
MEK1/2 þ JNK 6.75 4.95
MKK3/6 þ JNK 20.64 15.17
MEK1/2 1 p38 86.20 74.93
MKK4/7 1 p38 85.29 73.34
JNK þ ERK 28.22 21.05
JNK 1 p38 85.56 73.80
ERK 1 p38 97.35 96.91

Single-strong
perturbation (80%)

MEK1/2 73.83 60.08
MKK3/6 87.29 76.90
MKK4/7 3.34 2.44
JNK 43.55 32.38
ERK 75.64 62.13
p38 87.56 77.42

Target combinations with IL-6 inhibitory effects >85% are marked as bold.
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the high dissociation rate of the complex. The dissociation rate
constant koff may be thus a focal point for medicinal chemistry
to consider in terms of designing weak-binding drugs. In our
modeling system, we used low inhibition rates of the targets to
directly represent the effect of weak-binding drugs rather than
the high koff constant in consideration of making the simulation
results straighter and reducing the calculation complexity.

Another key issue for designing effective weak-binding
drugs may be to find proper drug target combinations within
complex cellular networks. Although experimental tools such
as HTS hold promise for discovering weak-binding drugs, they
are often of low efficiency and time-consuming, and the expo-
nentially increasing number of potential drug target combin-
ations also makes pure experimental tools quickly unfeasible
[9]. Appropriate computational models and algorithms, as well
as abundant database resources, can effectively reduce the
search space for determining promising combinations for ex-
perimental evaluation ([Table 3]). Thus, systematic integration
of computational tools with experimental strategies can con-
tribute to identifying low affinity hits efficiently and realizing
the full potential of weak-binding drugs in different disease
phenotypes [10].

In this study, we delineate the efficacy of multi-weak per-
turbation patterns on different elementary subgraphs to search

for optimal drug target combinations in specific pathways.
Specifically, we used dynamics simulation to identify biologic-
ally significant elementary subgraphs. Such subgraphs seem to
capture the essential dynamics of protein circuits, while being,
in a sense, insulated from most of the complexity of the pro-
teins themselves. In this way, it would be intriguing to interpret
the functionality of these intervention patterns. Interestingly,
targeted cancer therapy has provided the practical basis for how
the elementary subgraphs in cellular network are perturbed
successfully by drug cocktails. For example, co-targeting Akt
and mTOR in a STSs, respectively, by MK-2206 and MK-8669 is
an effective strategy for basal-like breast cancer [86]. For DPSs,
Meng et al. [87] reported that combination treatment with MEK
and AKT inhibitors is more effective than each drug alone in
human non-small-cell lung cancer both in vitro and in vivo.

Moreover, through assessing the synergistic effect of elem-
entary subgraph under varying parameters, we reveal that the
therapeutic effects of targeting these elementary subgraphs can
either be parameter dependent or parameter independent. The
parameters (KM, kcat) here depict the underlying kinetic rates
and dynamic properties of the signaling pathways, which play
key roles in governing cellular functions and coordinating cell
actions. Therefore, to achieve desired therapeutic effects, for
parameter-independent subgraphs, one only needs to consider

Table 2. Binding free energies and IC50 values of the selective inhibitors and the three natural products

Compound Structure MEK1 ERK2 JNK1 p38a

DGbind/IC50 DGbind/IC50 DGbind/IC50 DGbind/IC50

MEK1 inhibitor (PD0325901) N

NH2

S

NH2

N

NH2

S

NH2

þþþþ0.33 nM [73] þþþ>10 lM [74] þþ>10 lM [74] þþþ>10 lM [74]

ERK2 inhibitor (FR180204)

N

N

N
N

N

N
H

H2N

þþ>30 lM [75] þþþ0.33 lM [75] þþ— þþþ10 lM [75]

JNK1 inhibitor (SP600125)  O

N NH

þþ>10 lm [76] þþ>10 lM [77] þþþ0.04 lm [77] þþ>10 lm [77]

p38 inhibitor (SB203580)

O

S

N

N
H

N

F þþþ>10 lM [78] þþþ>10 lM [79] þþ>100 lM [80] þþþ0.05 lM [78, 79]

Luteolin

O

O OH

OH

OH

HO

þþ29.6 lM þþ>200 lM þþ88.4 lM þþ91.4 lM

Tanshinone IIA OO

O

þþ— þþ— þþ— þþ—

Scopoletin O

O

OHO þ>200 lM þ>200 lM þ>200 lM þ>200 lM

þVery weak affinity: Binding free energy>�10 kcal/mol.
þþWeak affinity, �25 kcal/mol < Binding free energy<�10 kcal/mol.
þþþModerate affinity, �40 kcal/mol < Binding free energy<�25 kcal/mol.
þþ þþStrong affinity, Binding free energy<�40 kcal/mol.

8 | Wang et al.

 at U
niversitÃ

¤tsbibliothek O
snabrÃ

¼
ck on M

arch 9, 2016
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


Table 3. Representative examples of database resources and their application in computational polypharmacology analysis

Databases URL/availability/developers Description Example applications

TCMSP [69] http://lsp.nwsuaf.edu.cn/tcmsp.php, publicly
available, Center of Bioinformatics,
Northwest A&F University, Yangling,
Shaanxi, China

It consists of 499 Chinese herbs with
29 384 ingredients, including 12 ADME-
related properties, known and pre-
dicted drug targets and diseases.
Compound–target and target–disease
networks and tools for network visual-
ization and analysis

Exploring the target space and
therapeutic potential of natural
products [10], mechanisms of
action of traditional Chinese
medicines [83]

BindingDB [7] http://www.bindingdb.org/bind/index.jsp,
publicly available, Skaggs School of
Pharmacy & Pharmaceutical Sciences, 9500
Gilman Drive, MC 0736, La Jolla, California

Database of measured binding affinities,
focusing chiefly on the interactions of
protein considered to be drug targets
with small, drug-like molecules.
Containing 1 155 030 binding data, for
7113 protein targets and 503 693 small
molecules.

Prediction of direct drug–target
interactions [55]

DrugBank [13] http://www.drugbank.ca/, publicly available,
Department of Computing Science,
University of Alberta, Edmonton, AB,
Canada

A unique bioinformatics and cheminfor-
matics resource that combines detailed
drug data with comprehensive drug tar-
get information. Containing 8312 drug
entries and 4317 nonredundant
proteins.

Facilitating polypharmacology
and data integration [11]

The Protein
Data Bank [71]

http://www.rcsb.org, publicly available
Rutgers, The State University of New
Jersey Center for Integrative Proteomics
Research 174 Frelinghuysen Rd
Piscataway, NJ; San Diego Supercomputer
Center (SDSC) and Skaggs School of
Pharmacy and Pharmaceutical Sciences;
University of California, San Diego (UCSD)
9500 Gilman Drive La Jolla, CA

The single worldwide repository of infor-
mation about the 3D structures of large
biological molecules, including proteins
and nucleic acids. Containing 114 741
Biological Macromolecular Structures.

Protein structure prediction [84],
protein–ligand docking [85]

Figure 4. (A) The simulated inhibitory effects of natural products [luteolin (LT) and tanshinone IIA (TS)] and selective inhibitors (PD0325901, FR180204, SP600125,

SB203580) on IL-6 and TNF-a production at 10 lM. PD: MEKi, FR: ERKi, SP: JNKi, SB: p38i. The inhibition rates of these compounds at 10 lM are inferred from their IC50

curves. (B) The inhibitory effects of natural products (LT and TS) and selective inhibitors (PD0325901, FR180204, SP600125, SB203580) on IL-6 and TNF-a production in

the supernatant of THP-1 cells at 10 lM. CTL: vehicle control, LPS: LPS treatment group. * indicates p < 0.05; ** indicates p < 0.01 (two-tailed Student’s t-test). Error bars

are standard deviations of measurements.
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the topology relationship between the two targets in the cellular
network; while for parameter-dependent subgraphs, one should
pay attention to both of the network topology and kinetic prop-
erties between the targets.

Applying the elementary subgraphs to the MAPK network re-
sults in the efficient identification of the drug target combin-
ations and the effective multi-target weak interventions. We
investigated stimulus-specific effects of multi-weak perturb-
ations in the JNK, ERK and p38 MAPK signaling pathways both
in silico and in vitro. Particularly, we found that luteolin, as a
multi-targeting kinase inhibitor, shows remarkable inhibitory
effects on IL-6 and TNF-a production at 10 mM through its weak
inhibitions on four target kinases (ERK, JNK, p38 and MEK),
which is a supplement to previous study that found Tumor
Progression Locus 2 as a target of luteolin [88]. The multi-target
weak intervention pattern provides theoretical and experimen-
tal evidence that it can anticipate considerable improvements
in the rate of discovery of safe and effective drugs. Together,
our work begins to define the opportunities for pharmacological
targeting of specific network topologies by weak systematic per-
turbations to achieve desirable therapeutic effects.

Further, natural products and their combinations commonly
interact with multiple drug targets thought to encompass and
exceed the currently limited space of targets of Food and Drug
Administration-approved drugs, thus holding potential for new
types of therapeutic opportunities [10]. Meanwhile, food compo-
nents having multiple weak targets may have an important role
to play in disease prevention and there is scope for the methods
described here to be used in discovering which dietary com-
pounds, alone or in combination, play a part in which prevent-
ive/therapeutic mechanisms [10]. Weak-binding drugs from
these materials have real opportunities for maximum efficiency
and, at the same time, they may offer the potential of reduced
adverse side effects. Here, we have presented a reliable ap-
proach to identify low-affinity compounds. Because this ap-
proach can be used to supplement high-affinity target-based
drug discovery, we can assume that more therapies could be re-
discovered. Therefore, if more scientists develop drugs not only
from the compounds that bind tightly to a protein target but
also from the small molecules that bind weakly or transiently to
multi-targets, new drug discovery will have a bright and promis-
ing future.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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